Breakthrough in the Understanding of High-T_c Superconductors Cooper Pairs Observed Above T_C Frequency-dependent measurements of the phase stiffness energy (converted to the equivalent temperature T_{phase}) of two $Bi_2Sr_2CaCu_2O_{2+\delta}$ samples with different O contents, one with T_c = 33 (left) and one with T_c = 74 K (right). The observation of a non-zero, frequency dependent T_{phase} above T_c is direct evidence for the persistence of Cooper pairing in the normal (non-superconducting) state. Moreover, frequency dependence is observed (i.e. the curves diverge) at exactly that temperature (black line) predicted by Kosterlitz and Thouless to describe loss of phase coherence in two spatial dimensions. This shows that the breakup of phase coherence is mediated by the thermal generation of vortices.